Question	Expected Answers	Marks	Additional guidance
1 (a) (i)	Initial KE of car = 0.5x970x27 ² = 3.5 x 10⁵ J (353565J)	B1	
(a) (Work done = Av Force x distance moved	C1	If $v^2 = u^2 + 2as$ is used. accept
	Av Force = 3.5 x 10 ⁵ J/40 = 8.8 x 10³ N (or 8750 N)	A1	$a = 0.27^{2}/(2x40) = 9.113 \text{ ms}^{-2} \text{ C1}$
	(or 353565/40 = 8836.7 N)		$F = ma = 970x9.11 = 8.84 \times 10^3 \text{ N A1}$
	Assumption: no air resistance	B1	Allow air friction or drag
(b)	correct use of E = mc $\Delta\theta$: 3.5 x 10 ⁵ /4 = 1.2x520x $\Delta\theta$	C1	If cand. forgets to divide by 4 allow any value
	$\Delta \theta = 140^{\circ}C$ (if 353565 is used $\Delta \theta = 142^{\circ}C$)	A1	between 560 and 570 for 1 mark.
(b) (Air resistance will be acting (slowing down the car)	M1	Do not allow sound since only a tiny
	(hence) reducing the KE of the car (WTTE)	A1	proportion of energy is lost in this way.
			Allow other valid comments as alternative
	The discs are hotter than the surroundings	B1	ways of scoring one or both of the 'B' marks:
	(hence) <u>energy/heat will be lost from discs/brakes</u> (WTTE)	B1	e.g. 'hot spots' on discs; discs are different.
			Try to credit a well argued case based upon
			correct physics- e.g. wheels locking.
(b) (i	Any valid suggestion: e.g. use a material with a higher s.h.c		Confusion between shc and heat capacity
	use a disc with a higher heat capacity	B1	should not be penalised.
	Use discs of greater mass		
	put holes in the discs (to increase air flow)		
	Total	11	

Question		on	Answer	Marks	Guidance	
2	(a)	(i)	<i>n</i> = number of moles (in sample) AND		Note: both definitions are required	
			N = number of atoms / molecules (in sample)	B1	Not: particles / Avogadro's constant	
		(ii)	<i>n</i> or <i>N</i> AND T is constant (and R and k are constants)	M1	<i>nRT</i> or <i>NkT</i> is constant is not sufficient	
			for a fixed mass (of gas), $pV = \text{constant} / p \propto 1/V$	A1		
		(iii)	Shows that $Nm^{-2} \times m^3 = Nm$	B1	Allow: Use of base units for both <i>pV</i> and work done	
	(b)	(i)	Calculates $p \ge (1/V)^{-1}$ at two points on the graph	M1	Expected values for pV are 7500 (Nm) or 0.075 (x 10 ⁻⁵) for most points	
			values are the same pV = constant / $p \propto 1/V$ / nRT = constant	A1	Allow: Correct calculation of gradient (M1) Calculates intercept = 0 hence graph is through the origin and pV = constant / $p \propto 1/V$ (A1)	
		(ii)	Number of moles in 0.050 kg = 0.05/0.016 (= 3.125)	C1		
			$T = \frac{pV}{nR} = \frac{7500}{3.125 \times 8.31} = 289$ (K)	C1	Allow: possible ecf from (b)(i) or error in <i>n</i> but apply POT error for use of $pV = 0.075$ leading to $T = 2.9 \times 10^{-3} \text{ K}$	
			T = 16 (°C)	A1	Note: Mark is for correct conversion of their $T(K)$ value	
					Note: Allow full range of marks for other sensible alternative approaches e.g. use of a molecular mass of 0.032 kg/mol giving a temperature of 305°C	
			Total	9		

Question		on	Answer Marks		Guidance
3	(a)	(i)	vibrate (about their 'fixed' positions)	B1	Allow: molecules vibrate
		(ii)	greater amplitude / greater frequency (of vibration)	B1	Not: faster / more / bigger /more vigorous (vibrations)
		(iii)	Either internal energy increases Or potential energy (of molecules) increases and the kinetic energy remains constant	B1	
			temperature remains constant	B1	
	(b)	(i)	$P t = m c \Delta \theta$ $48 \times 720 = 0.98 \times c \times (54 - 18)$ $+$ $0.027 \times 850 \times (38-18)$	C1 C1 C1	 Note: mark is for correct substitution for total energy input and heat gained by metal Note: mark is for adding a correct substitution for heat gained by
			c = 970 (J kg ⁻¹ K ⁻¹)	A1	insulation into this equation Note: answer to 3 sf = 967 Calculation of $c = 980$ ignoring energy used to heat insulation scores 2 marks
		(ii)	Without the insulation there will be more heat lost to the surroundings / air (AW)	M1	Not: lost to wires / data logger
			final temperature will be lower OR a lower temperature rise OR more energy will be required to give the same temperature rise / final temperature		
			AND hence c is higher than that calculated in (i)	A1	
			Total	10	

Question		on	Answer	Marks	Guidance
4	(a)		latent heat of fusion	B1	Allow: Specific latent heat of fusion
					Allow: (Specific) latent energy of fusion
			✓The term fusion to be included and spelled correctly to gain the B1 mark		Must use tick or cross on Scoris to show if the mark is awarded
	(b)	(i)	Total / sum of randomly (distributed) kinetic energy and potential energy of molecules/atoms	B2	Allow: 1 mark only if molecules / atoms and/or randomly are omitted
		(ii)	Potential energy of the molecules increases	B1	
			Kinetic energy of molecules is the same for water and steam (since the	B1	Allow : work is done to break the bonds (between
			temperature is the same) / <u>work</u> is <u>done</u> in moving molecules apart		
	(c)	(i)	Mass of air = volume x density = 15 x 1.2 (= 18 kg)	C1	
			Heat energy transferred to air in one hour $Q = 12 \times 60 \times 60 (= 43200 \text{ J})$		
		$\Delta \theta = Q / mc = 12 \times 60 \times 60 / 18 \times 990$		C1	Allow: any subject
					Treat a transcription error as one AE.
			Temperature rise in one hour $= 2.4 \text{ K}$		
				A1	Allow: 2 K as question asks for an estimate
		(ii)	Any two from		
			Heat lost to structure of greenhouse / contents		
			Heat lost through glass / from the greenhouse / surroundings		
			Average rate of loss of heat reduces (as temperature falls)	B1 x 2	
			Total	10	

Question		on	Answer	Marks	Guidance
5	(a)	(i)	Collision in which kinetic energy is conserved	B1	Allow: no ke lost (wtte)
		(ii)	Any <u>four</u> from		Symbols must be defined in formulae
			<u>Many</u> molecules collide with the walls		
			 A change in momentum occurs when molecule(s) collide with (and rebound from) the walls of container 		
			Force is rate of change of momentum		
			 The force exerted by the molecule(s) on wall is equal to force exerted by the wall on the molecule(s) (by Newton's third law) 		
			 pressure (on wall) = (total) force (on wall) / area (of wall) 	B1 x 4	
		(iii)	Any <u>two</u> from		
			 Molecules move faster/have greater <u>kinetic</u> energy (at higher temperature) 		
			 There is an increased <u>rate</u> of collision / more collisions occur <u>per</u> second / collisions occur <u>more often</u> 	B1 x 2	Not: greater force Not: harder collisions
			Each collision involves a greater change in momentum		
	(b)	($P_1 V_1 / T_1 = P_2 V_2 / T_2$	C1	
			with T stated in Kelvin or clearly shown in subsequent working		
			$P_2 = 105 \text{ x } 5\text{x}10^3 \text{ x } (273 - 30)/(273 + 20) \text{ x } 1.2 \text{ x } 10^4$	C1	Temperatures must be in kelvin to score this mark.
			$P_2 = 36$ (kPa)	A1	Allow : consistent working in pascal
		(ii)	Risk that balloon will burst (with further increase in volume)	B1	Allow: pop / explode
			Total	11	